
A methodical makeover for CTDB

Martin Schwenke <martin@meltin.net>
Amitay Isaacs <amitay@samba.org>

Samba Team
IBM (Australia Development Laboratory, Linux Technology Center)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

What does CTDB do?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Functionality

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Functionality

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Functionality

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Functionality

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Functionality

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Functionality

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Functionality

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

Logging daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

Logging daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

Logging daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

Logging daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

Logging daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Functionality and current architecture

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Logging daemon

Logging :-)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything

Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything

Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything

Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything

Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything

Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)

Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything

Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything

Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything
Every new developer’s approach . . .

Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything
Every new developer’s approach . . .
Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Why makeover?

It’s time

Not a proof of concept anymore . . .

Limitations imposed by design and implementation

Organic Growth

Hacks and band-aids

Re-factoring?

Easy way to introduce new abstractions (e.g. message lists,
locking)
Can be challenging (e.g. protocol code in CTDB/Samba)

Itch to re-design everything
Every new developer’s approach . . .
Some problems can be designed away
Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up
Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up
Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up
Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Design

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up
Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral

Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)

Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Limitations: Implementation

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon

Unstructured CLI and configuration

Need to re-design

Scalability, Maintainability

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Motivation

What is the smallest chunk that can be split as a separate daemon?

Logging daemon

Self-contained code

Can be used as a template for other daemons

Looks simple enough. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Motivation

What is the smallest chunk that can be split as a separate daemon?

Logging daemon

Self-contained code

Can be used as a template for other daemons

Looks simple enough. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

Before: Custom logging daemon

Why? syslog(3) blocks when syslog daemon gets busy

What? Log each received message using syslog(3)

How? Custom UDP protocol

Problems

Only used when syslog enabled, not file logging

File logging can block too!

Protocol is “structs on the wire”

After?

Shiny new daemon with well-defined protocol. . .

. . . that handles all logging

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

The big idea!

Create an asynchronous framework for CTDB daemons!

Use Samba’s tevent_req framework!

Define protocol and auto-generate marshalling code!

Use all this to write logging daemon (as a template)!

And then use the template for writing other daemons!

The big problem!

Logging is hard!

How do you handle errors in logging daemon?

The better idea!

We’re not in the logging business . . . daemons already exist!

Use RFC5424 message format

Transmit via UDP as per RFC5426

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

So, how did that work out?

First Linux version quite easy but not merged because. . .

Unified Samba/CTDB build coming up (see later)

Samba’s debug.{ch} is completely different to CTDB’s

Spend a month completing the unified build

Send to Unix domain socket in non-blocking mode?

rsyslogd doesn’t speak RFC5424 on Unix domain socket?

Learn about RFC3164!

Location of socket is not standardised

Much of RFC3164 is only recommended. . .

. . . and sometimes not supported

FreeBSD supports RFC3164, not RFC5424, over UDP

Tear out hair. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

CTDB logging=syslog* options

syslog Use syslog(3)

syslog:nonblocking RFC3164 to Unix domain socket

syslog:udp RFC3164 to UDP socket

syslog:udp-rfc5424 RFC5424 to UDP socket (RFC5426)

After

A lot of time passed. . . more than 12 months

Above merged into (Samba) master branch

Retired from the logging business

Future?

Promote some of this to Samba’s debug.{ch}

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

CTDB logging=syslog* options

syslog Use syslog(3)

syslog:nonblocking RFC3164 to Unix domain socket

syslog:udp RFC3164 to UDP socket

syslog:udp-rfc5424 RFC5424 to UDP socket (RFC5426)

After

A lot of time passed. . . more than 12 months

Above merged into (Samba) master branch

Retired from the logging business

Future?

Promote some of this to Samba’s debug.{ch}

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

CTDB logging=syslog* options

syslog Use syslog(3)

syslog:nonblocking RFC3164 to Unix domain socket

syslog:udp RFC3164 to UDP socket

syslog:udp-rfc5424 RFC5424 to UDP socket (RFC5426)

After

A lot of time passed. . . more than 12 months

Above merged into (Samba) master branch

Retired from the logging business

Future?

Promote some of this to Samba’s debug.{ch}

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

CTDB logging=syslog* options

syslog Use syslog(3)

syslog:nonblocking RFC3164 to Unix domain socket

syslog:udp RFC3164 to UDP socket

syslog:udp-rfc5424 RFC5424 to UDP socket (RFC5426)

After

A lot of time passed. . . more than 12 months

Above merged into (Samba) master branch

Retired from the logging business

Future?

Promote some of this to Samba’s debug.{ch}

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

CTDB logging=syslog* options

syslog Use syslog(3)

syslog:nonblocking RFC3164 to Unix domain socket

syslog:udp RFC3164 to UDP socket

syslog:udp-rfc5424 RFC5424 to UDP socket (RFC5426)

After

A lot of time passed. . . more than 12 months

Above merged into (Samba) master branch

Retired from the logging business

Future?

Promote some of this to Samba’s debug.{ch}

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Component: Logging daemon

CTDB logging=syslog* options

syslog Use syslog(3)

syslog:nonblocking RFC3164 to Unix domain socket

syslog:udp RFC3164 to UDP socket

syslog:udp-rfc5424 RFC5424 to UDP socket (RFC5426)

After

A lot of time passed. . . more than 12 months

Above merged into (Samba) master branch

Retired from the logging business

Future?

Promote some of this to Samba’s debug.{ch}

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design

Motivation

Separate functionality in individual daemons

Design

Public IP address daemon

Service management daemon

Cluster management daemon

Database daemon

. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design

Motivation

Separate functionality in individual daemons

Design

Public IP address daemon

Service management daemon

Cluster management daemon

Database daemon

. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Callback from other daemons when status changes
Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Callback from other daemons when status changes
Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Callback from other daemons when status changes
Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Callback from other daemons when status changes
Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses

Callback from other daemons when status changes
Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Callback from other daemons when status changes

Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Callback from other daemons when status changes
Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Callback from other daemons when status changes
Callback can be a script that gathers extra status data.
For example, cluster membership and/or service health status.

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Service management daemon

Four functions:

Startup

Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Service management daemon

Four functions:

Startup
Shutdown

Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership

Coordinates database recovery
Coordinates public IP address (re)allocation

Callbacks registered for state changes

Can we support Heartbeat, etcd (or similar) as an alternative?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership

Coordinates database recovery
Coordinates public IP address (re)allocation

Callbacks registered for state changes

Can we support Heartbeat, etcd (or similar) as an alternative?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership

Coordinates database recovery
Coordinates public IP address (re)allocation

Callbacks registered for state changes

Can we support Heartbeat, etcd (or similar) as an alternative?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership

Coordinates database recovery
Coordinates public IP address (re)allocation

Callbacks registered for state changes

Can we support Heartbeat, etcd (or similar) as an alternative?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership

Coordinates database recovery
Coordinates public IP address (re)allocation

Callbacks registered for state changes

Can we support Heartbeat, etcd (or similar) as an alternative?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection

Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket

Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



New design: Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Status

Question

We didn’t get all of this done, did we?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .

Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build

Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)

Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling

Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .

. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba

Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!

See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge

RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support

Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation

IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support

git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Distractions

CTDB

Framework, experiments with logging daemon, . . .
Unified Samba/CTDB tree and build
Portability (Linux on Power, AIX, FreeBSD)
Performance: lock scheduling
Fix IPv6 support

Autocluster

Create virtual RHEL/CentOS libvirt/KVM clusters. . .
. . . for testing clustered Samba
Written in bash(1) since 2008!
See LCA2009 presentation with Tridge
RHEL 7 support
Modularisation
IPv6 support
git://git.samba.org/autocluster.git

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



But wait, there’s more. . .

Well, not a lot more, but a little more. . .

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code

Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure

Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code

Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Beginning of a makeover

Lots of re-design, lots of work

Start with a clean slate?

Sounds good, but a huge step to get working code
Limited development team

Incremental updates

Harness existing testing infrastructure
Will require throw-away glue code
Where to start?

Protocol handling

Samba and CTDB have separate implementation of protocol

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations

Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API

Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right

No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)

Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi

Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: Protocol handling

Implement libctdb

But wait, wasn’t there a libctdb already?

Implemented few messages, but not database operations
Provided mostly synchronous and some asynchronous API
Hard to get thread-safe asynchronous API right
No consumers for libctdb (partial use by ctdb CLI)

Implement libctdbapi

CTDB protocol marshalling API (client and server)
Rewrite Samba’s CTDB interface using libctdbapi
Rewrite CTDB server side using libctdb-serverapi?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: for the rest . . .

Keep hacking in the spare time . . .

The pace is too slow to keep up with Samba releases

Better solution

Get smart(er) developers involved!

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: for the rest . . .

Keep hacking in the spare time . . .

The pace is too slow to keep up with Samba releases

Better solution

Get smart(er) developers involved!

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: for the rest . . .

Keep hacking in the spare time . . .

The pace is too slow to keep up with Samba releases

Better solution

Get smart(er) developers involved!

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Makeover: for the rest . . .

Keep hacking in the spare time . . .

The pace is too slow to keep up with Samba releases

Better solution

Get smart(er) developers involved!

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM is a registered trademark of International Business
Machines Corporation in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB



Questions?

Martin Schwenke, Amitay Isaacs A methodical makeover for CTDB


