

The kernel report

(LCA 2015 edition)

Jonathan Corbet
LWN.net

corbet@lwn.net

It's nice to be back!

Recent history

Recent kernel history

Vers Date Csets Devs Days
3.13 Jan 19 12,127 1,362 77
3.14 Mar 20 12,311 1,306 70
3.15 Jun 8 13,722 1,492 70
3.16 Aug 3 12,804 1,478 56
3.17 Oct 5 12,354 1,433 63
3.18 Dec 7 11,379 1,458 63
3.19 (February) 11,822* 1,308*

(*so far)

Stable updates

Currently maintained by Greg:

Vers Updates Fixes
3.10 61 3,866
3.14 25 2,316

What we've added

Seven new system calls:
bpf()
getrandom()
kexec_file_load()
memfd_create()
renameat2()
seccomp()
execveat()

What we've added

Deadline scheduling

Control group reworking

Multiqueue block layer

DRM render nodes

Lots of networking improvements

...and, of course...

Hundreds of new drivers

...and, of course...

Hundreds of new drivers

Thousands of fixes

A few things I worry about

Testing

Photo: Alberto G.

Better in some ways

linux-next
Outstanding integration testing

0day build bot
Immediate feedback on build problems

Coverity, trinity, smatch, Coccinelle, …
Static analysis, fuzzing, problem highlighting

Worse in others

Worse in others

“Did I just break
the kernel”?

Photo: Samuel Livingston

Toward better test frameworks

A “make test” target for the kernel
Rudimentary now, will get better

Toward better test frameworks

A “make test” target for the kernel
Rudimentary now, will get better

Encouraging wider-scale testing
Especially for performance issues

Performance

Kernel testing is everybody's
business

Real time

Photo: Jordiet

Real time response in a general-
purpose operating system is

possible

Real time response in a general-
purpose operating system is

possible

...if somebody will support the
work...

Security

Photo: stockmonkeys.com

The bad news

Lots of high-profile security incidents in 2014

115 Kernel CVE's in 2014

Lots of old and unmaintained code

Lots of motivated attackers

Few people working on the problem

The goodish news

There were 175 CVEs in 2013

Some effort is going into the problem
Kernel hardening
Reducing effects of a compromise

But it's not enough.

2038 is closer
than it seems...

Photo: XWRN

Preparing for 2038

Core timekeeping code: done

Preparing for 2038

Core timekeeping code: done

New system call APIs: in progress

Preparing for 2038

Core timekeeping code: done

New system call APIs: in progress

C library preparation: being thought about

Preparing for 2038

Core timekeeping code: done

New system call APIs: in progress

C library preparation: being thought about

Fixing applications … don't ask.

The Internet of Things

The Internet of Things

IoT systems can be small

IoT systems can be small

...2MB of installed memory, for example...

Kernel growth will not stop

...we need the features...

What's to do?

The kernel tinification effort

http://tiny.wiki.kernel.org/

Tinification challenges

Avoiding a configuration mess

Support

Keeping ahead of growth

Either Linux will be suitable for IoT
applications...

Either Linux will be suitable for IoT
applications...

...or something else will come along

New and interesting stuff

sealed files and memfds

What is a sealed file?

Not this kind of seal!

Photo: Liam Quinn

sealed files and memfds

What is a sealed file?
A memory-mapped file whose contents are immutable
shmfs only

sealed files and memfds

What is a sealed file?
A memory-mapped file whose contents are immutable
shmfs only

memfd: a sharable, sealable memory area

sealed files and memfds

What is a sealed file?
A memory-mapped file whose contents are immutable
shmfs only

memfd: a sharable, sealable memory area

Result: sharable, unchangeable memory areas
Merged for 3.17

kdbus

D-bus-like IPC in the kernel

Why?
Performance
Security
Early availability

Merge probable in 2015

Virtual machines

Virtual machines in the kernel???

Virtual machines

Virtual machines in the kernel???

We have:
ACPI
Netfilter
nftables
tracing filters
socket filters with BPF
…

BPF

“Berkeley Packet Filter”

Originally designed for tcpdump-like tools

Used to filter packets delivered to sockets
Also with seccomp

Extended BPF (eBPF)

More registers (BPF has two)
New instructions

Similar to hardware operations
Ability to call kernel functions
Program verifier

eBPF maps
Arrays to share data with the kernel or user space

Moved out of the networking stack in 3.17

The future of eBPF

Seccomp filters
Tracing filters
nftables?

… eBPF is becoming the standard kernel VM

Page fault handling in user space

Page fault handling in user space

Why???

Page fault handling in user space

Why? Virtual machine migration

Page fault handling in user space

Mark a region for user-space handling:

madvise(...MADV_USERFAULT);

Get fault notifications with:

userfaultfd();

Resolve faults with:

remap_anon_pages(...);

Live kernel patching

a.k.a. reboots are a pain

Live kernel patching

We do not lack for options
KernelCare
ksplice
kPatch
kGraft
Parallels live patching

Live kernel patching

We do not lack for options
KernelCare
ksplice
kPatch
kGraft
Parallels live patching

Live kernel patching

We do not lack for options
KernelCare
ksplice
kPatch
kGraft
Parallels live patching

Live kernel patching

We do not lack for options
KernelCare
ksplice
kPatch
kGraft
Parallels live patching

kPatch and kGraft

Both use ftrace machinery
Catch calls to changed functions
Divert to a new version

They differ in other ways

kPatch and kGraft

Both use ftrace machinery
Catch calls to changed functions
Divert to a new version

They differ in other ways

Will both be merged? No way.

The future of live patching

kGraft and kPatch have agreed on a base layer

Expected to merge for 3.20

The trouble with crazy new stuff

People use it!

The trouble with crazy new stuff

People use it!

These features must be supported forever
...as must the API

We're not always all that good at designing APIs
control groups

How can we blaze new trails without
making a huge mess of the kernel?

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

