
Mozilla & The Xiph.Org Foundation

The Daala Video Codec Project
Next-next Generation Video

Timothy B. Terriberry



Mozilla & The Xiph.Org Foundation2 

● Patents are no longer a problem for free 
software

– We can all go home



Mozilla & The Xiph.Org Foundation3 

● Except... not quite



Mozilla & The Xiph.Org Foundation4 

Carving out Exceptions in 
OIN

(Table 0 contains one Xiph codec: FLAC)



Mozilla & The Xiph.Org Foundation5 

Why This Matters
● Encumbered codecs are a billion dollar toll-tax 

on communications
– Every cost from codecs is repeated a million fold 

in all multimedia software

● Codec licensing is anti-competitive
– Licensing regimes are universally discriminatory

– An excuse for proprietary software (Flash)

● Ignoring licensing creates risks that can show 
up at any time

– A tax on success



Mozilla & The Xiph.Org Foundation6 

The Royalty-Free Video 
Challenge

● Creating good codecs is hard
– But we don’t need many

– The best implementations of patented codecs are 
already free software

● Network effects decide
– Where RF is established, non-free codecs see no 

adoption (JPEG, PNG, FLAC, …)

● RF is not enough
– People care about different things

– Must be better on all fronts



Mozilla & The Xiph.Org Foundation7 

We Did This for Audio



Mozilla & The Xiph.Org Foundation8 

The Daala Project
● Goal: Better than HEVC without infringing IPR
● Need a better strategy than “read a lot of 

patents”
– People don’t believe you

– Analysis is error-prone
● Try to stay far away from the line, but...
● One mistake can ruin years of development effort
● See: H.264 Baseline



Mozilla & The Xiph.Org Foundation9 

Strategy
● Look for some elements common to broad 

classes of patents
– Only need to avoid one element in a patent claim to 

be able to say “we don’t do that”

● Replace with fundamentally different techniques
– Higher risk/higher reward than incremental changes

– Can avoid vast swaths of IPR

– Creates new challenges others haven’t solved

● Still have to read a lot of patents



Mozilla & The Xiph.Org Foundation10 

Fundamentally Different
● Identified four key areas we can avoid

– “Displaced Frame Difference” (motion 
compensation)

– Adaptive loop filters (deblocking)

– Spatial prediction (“intra”)

– Binary arithmetic coding (specifically, context 
modeling)



Mozilla & The Xiph.Org Foundation11 

Displaced Frame Difference
● Motion Compensation

– Copy blocks from an already encoded frame 
(offset by a motion vector)

– Subtract from the current frame

– Code the residual

⊖ =

Input Reference frame Residual



Mozilla & The Xiph.Org Foundation12 

Displaced Frame Difference
● The “displaced frame difference” (DFD) is the 

term of art for that residual
● Not in and of itself patentable!

– At least, not anymore...

● But found as one element of 
nearly all patent claims on 
motion compensation



Mozilla & The Xiph.Org Foundation13 

What We Do Instead
● “Perceptual” Vector Quantization
● Based on work in Opus designed to preserve 

energy (film grain, fine details, etc.)



Mozilla & The Xiph.Org Foundation14 

Perceptual Vector 
Quantization

● Separate “gain” (energy) from “shape” (spectrum)
– Vector = Magnitude × Unit Vector (point on sphere)

● Potential advantages
– Can give each piece different rate allocations

● Preserve energy (contrast) instead of low-passing

– Free “activity masking”
● Can throw away more information in regions of high 

contrast (relative error is smaller)
● The “gain” is what we need to know to do this!

– Better representation of coefficients



Mozilla & The Xiph.Org Foundation15 

What does PVQ have to do 
with DFDs?

● Subtracting and coding a residual loses energy 
preservation

– The “gain” no longer represents the energy of the 
original signal

● But we still want to use predictors
– They do a really good job of reducing what we 

need to code



Mozilla & The Xiph.Org Foundation16 

What Does Prediction Really 
Do?

● Prediction changes the probability of points 
near the predictor

– Highly probable things are cheap to code

– With DFDs, “highly probable” means “near zero”

● Predicting gains is easy
– Subtract gain of predictor

● Enumerating points on a sphere near an 
arbitrary point (to model probabilities) is hard

– Solution: Transform the space so we can single 
out points near the predictor



Mozilla & The Xiph.Org Foundation17 

2-D Projection Example

Input

● Input



Mozilla & The Xiph.Org Foundation18 

2-D Projection Example

Prediction

Input

● Input + Prediction



Mozilla & The Xiph.Org Foundation19 

2-D Projection Example

Prediction

Input

● Input + Prediction
● Compute Householder 

Reflection



Mozilla & The Xiph.Org Foundation20 

2-D Projection Example

Prediction

Input

● Input + Prediction
● Compute Householder 

Reflection
● Apply Reflection



Mozilla & The Xiph.Org Foundation21 

2-D Projection Example

θ

Prediction

Input

● Input + Prediction
● Compute Householder 

Reflection
● Apply Reflection
● Compute & 

code angle



Mozilla & The Xiph.Org Foundation22 

2-D Projection Example
● Input + Prediction
● Compute Householder 

Reflection
● Apply Reflection
● Compute & 

code angle
● Code other 

dimensions

Prediction

Input

θ



Mozilla & The Xiph.Org Foundation23 

What does this accomplish?
● Creates another “intuitive” parameter, θ

– “How much like the predictor are we?”

– θ = 0 → use predictor exactly

● Remaining N-1 dimensions are coded with VQ 
– We know their magnitude is gain*sin(θ)

● Instead of subtraction (translation), we’re 
scaling and reflecting

– Whatever else you can say, this is nothing like 
computing a DFD



Mozilla & The Xiph.Org Foundation24 

And it works!

PSNR for PVQ vs. Scalar Quantization 
(flat quantization, no activity masking)

FastSSIM for turning on activity masking



Mozilla & The Xiph.Org Foundation25 

Other Differences...



Mozilla & The Xiph.Org Foundation26 

Loop Filters
● “Loop filters” filter block edges to remove 

blocking artifacts
– Adaptive: filter strength depends on the amount of 

difference across the block edge

– Not invertible

● Simple filters used in H.263 (and Theora!)
– Very simple to keep CPU cost low

● Since H.264 there’s been an explosion of 
complex filter designs

– And patents



Mozilla & The Xiph.Org Foundation27 

Lapped Transforms
● Non-adaptive, invertible deblocking post-filter
● Encoder applies the inverse (a blocking filter)
● Technique dates back to the 90’s

P

DCT

DCT

P

P

DCT

DCT

IDCT

IDCT

IDCT

IDCT

P-1

P-1

P-1

Prefilter Postfilter



Mozilla & The Xiph.Org Foundation28 

Blocking Filter
● Prefilter makes things blocky



Mozilla & The Xiph.Org Foundation29 

Spatial (Intra) Prediction
● Predict a block from its causal neighbors
● Explicitly code a direction along which to copy
● Extend boundary of neighbors into new block 

along this direction



Mozilla & The Xiph.Org Foundation30 

Intra Prediction with Lapped 
Transforms

● We can’t copy pixels until we undo the lapping
– We can’t undo the lapping until we’ve predicted 

those pixels

● Don’t copy pixels: copy transform coefficients
– Currently just horizontal and vertical directions

– Chroma (color) predicted from luma (brightness)

● Not as good, but we try to make up for it 
elsewhere (e.g., lapping itself)



Mozilla & The Xiph.Org Foundation31 

Binary Arithmetic Coding
● Code only binary decisions

– Actual cost in bits depends on probability

– Very cheap to code 1 symbol

– Need to code a lot of symbols (not parallelizable)

● Probability modeling
– Simple 1-byte lookup tables

● Non-binary values
– Various schemes for converting to binary 

decisions (“binarization”)



Mozilla & The Xiph.Org Foundation32 

Non-Binary Arithmetic Coding
● Code values with up to 16 possibilities

– Equivalent to 4 binary decisions

– More expensive, but not 4x more expensive
● A lot of overheads are per-symbol

– Effectively parallel!

● One byte cannot model 16 probabilities
– Use, e.g., expected value plus distribution shape 

(Laplace, Exponential) and compute on the fly

● Convert things to hex, not binary!
– Often combine multiple values into one symbol



Mozilla & The Xiph.Org Foundation33 

How Are We Doing?



Mozilla & The Xiph.Org Foundation34 

PSNR-HVS-M Results on 19 
Sequences



Mozilla & The Xiph.Org Foundation35 

FastSSIM Results on 19 
Sequences



Mozilla & The Xiph.Org Foundation36 

Are We Compressed Yet?
● https://arewecompressedyet.com/

– Will run metrics on any git commit (we’re happy to 
add your repository, just ask)

– Amazon EC2 instances, so results in a few minutes

– Details on setup at 
https://wiki.xiph.org/AreWeCompressedYet

https://arewecompressedyet.com/
https://wiki.xiph.org/AreWeCompressedYet


Mozilla & The Xiph.Org Foundation37 

Daala Demo Pages
● https://people.xiph.org/~xiphmont/demo/

– Next Generation Video: Introducing Daala, Part 1

– Introducing Daala, Part 2: Frequency Domain Intra Prediction

– Introducing Daala, Part 3: Time/Frequency Resolution Switching

– Introducing Daala, Part 4: Chroma from Luma

– Daala, Part 5: Painting Images for Fun and Profit

– Daala, Part 6: Perceptual Vector Quantization

– Daala Progress Update 20141223: Still Images

https://people.xiph.org/~xiphmont/demo/
https://people.xiph.org/~xiphmont/demo/daala/demo1.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo2.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo4.shtml
https://people.xiph.org/~jm/daala/paint_demo/
https://people.xiph.org/~jm/daala/pvq_demo/
https://people.xiph.org/~xiphmont/demo/daala/update1.shtml


Mozilla & The Xiph.Org Foundation38 

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

