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● Patents are no longer a problem for free 
software

– We can all go home
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● Except... not quite



Mozilla & The Xiph.Org Foundation4 

Carving out Exceptions in 
OIN

(Table 0 contains one Xiph codec: FLAC)



Mozilla & The Xiph.Org Foundation5 

Why This Matters
● Encumbered codecs are a billion dollar toll-tax 

on communications
– Every cost from codecs is repeated a million fold 

in all multimedia software

● Codec licensing is anti-competitive
– Licensing regimes are universally discriminatory

– An excuse for proprietary software (Flash)

● Ignoring licensing creates risks that can show 
up at any time

– A tax on success
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The Royalty-Free Video 
Challenge

● Creating good codecs is hard
– But we don’t need many

– The best implementations of patented codecs are 
already free software

● Network effects decide
– Where RF is established, non-free codecs see no 

adoption (JPEG, PNG, FLAC, …)

● RF is not enough
– People care about different things

– Must be better on all fronts
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We Did This for Audio
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The Daala Project
● Goal: Better than HEVC without infringing IPR
● Need a better strategy than “read a lot of 

patents”
– People don’t believe you

– Analysis is error-prone
● Try to stay far away from the line, but...
● One mistake can ruin years of development effort
● See: H.264 Baseline
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Strategy
● Look for some elements common to broad 

classes of patents
– Only need to avoid one element in a patent claim to 

be able to say “we don’t do that”

● Replace with fundamentally different techniques
– Higher risk/higher reward than incremental changes

– Can avoid vast swaths of IPR

– Creates new challenges others haven’t solved

● Still have to read a lot of patents
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Fundamentally Different
● Identified four key areas we can avoid

– “Displaced Frame Difference” (motion 
compensation)

– Adaptive loop filters (deblocking)

– Spatial prediction (“intra”)

– Binary arithmetic coding (specifically, context 
modeling)
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Displaced Frame Difference
● Motion Compensation

– Copy blocks from an already encoded frame 
(offset by a motion vector)

– Subtract from the current frame

– Code the residual

⊖ =

Input Reference frame Residual
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Displaced Frame Difference
● The “displaced frame difference” (DFD) is the 

term of art for that residual
● Not in and of itself patentable!

– At least, not anymore...

● But found as one element of 
nearly all patent claims on 
motion compensation
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What We Do Instead
● “Perceptual” Vector Quantization
● Based on work in Opus designed to preserve 

energy (film grain, fine details, etc.)



Mozilla & The Xiph.Org Foundation14 

Perceptual Vector 
Quantization

● Separate “gain” (energy) from “shape” (spectrum)
– Vector = Magnitude × Unit Vector (point on sphere)

● Potential advantages
– Can give each piece different rate allocations

● Preserve energy (contrast) instead of low-passing

– Free “activity masking”
● Can throw away more information in regions of high 

contrast (relative error is smaller)
● The “gain” is what we need to know to do this!

– Better representation of coefficients
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What does PVQ have to do 
with DFDs?

● Subtracting and coding a residual loses energy 
preservation

– The “gain” no longer represents the energy of the 
original signal

● But we still want to use predictors
– They do a really good job of reducing what we 

need to code
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What Does Prediction Really 
Do?

● Prediction changes the probability of points 
near the predictor

– Highly probable things are cheap to code

– With DFDs, “highly probable” means “near zero”

● Predicting gains is easy
– Subtract gain of predictor

● Enumerating points on a sphere near an 
arbitrary point (to model probabilities) is hard

– Solution: Transform the space so we can single 
out points near the predictor
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2-D Projection Example

Input

● Input
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2-D Projection Example

Prediction

Input

● Input + Prediction
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2-D Projection Example

Prediction

Input

● Input + Prediction
● Compute Householder 

Reflection
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2-D Projection Example

Prediction

Input

● Input + Prediction
● Compute Householder 

Reflection
● Apply Reflection
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2-D Projection Example

θ

Prediction

Input

● Input + Prediction
● Compute Householder 

Reflection
● Apply Reflection
● Compute & 

code angle
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2-D Projection Example
● Input + Prediction
● Compute Householder 

Reflection
● Apply Reflection
● Compute & 

code angle
● Code other 

dimensions

Prediction

Input

θ
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What does this accomplish?
● Creates another “intuitive” parameter, θ

– “How much like the predictor are we?”

– θ = 0 → use predictor exactly

● Remaining N-1 dimensions are coded with VQ 
– We know their magnitude is gain*sin(θ)

● Instead of subtraction (translation), we’re 
scaling and reflecting

– Whatever else you can say, this is nothing like 
computing a DFD
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And it works!

PSNR for PVQ vs. Scalar Quantization 
(flat quantization, no activity masking)

FastSSIM for turning on activity masking
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Other Differences...
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Loop Filters
● “Loop filters” filter block edges to remove 

blocking artifacts
– Adaptive: filter strength depends on the amount of 

difference across the block edge

– Not invertible

● Simple filters used in H.263 (and Theora!)
– Very simple to keep CPU cost low

● Since H.264 there’s been an explosion of 
complex filter designs

– And patents
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Lapped Transforms
● Non-adaptive, invertible deblocking post-filter
● Encoder applies the inverse (a blocking filter)
● Technique dates back to the 90’s

P

DCT

DCT

P

P

DCT

DCT

IDCT

IDCT

IDCT

IDCT

P-1

P-1

P-1

Prefilter Postfilter
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Blocking Filter
● Prefilter makes things blocky
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Spatial (Intra) Prediction
● Predict a block from its causal neighbors
● Explicitly code a direction along which to copy
● Extend boundary of neighbors into new block 

along this direction
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Intra Prediction with Lapped 
Transforms

● We can’t copy pixels until we undo the lapping
– We can’t undo the lapping until we’ve predicted 

those pixels

● Don’t copy pixels: copy transform coefficients
– Currently just horizontal and vertical directions

– Chroma (color) predicted from luma (brightness)

● Not as good, but we try to make up for it 
elsewhere (e.g., lapping itself)
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Binary Arithmetic Coding
● Code only binary decisions

– Actual cost in bits depends on probability

– Very cheap to code 1 symbol

– Need to code a lot of symbols (not parallelizable)

● Probability modeling
– Simple 1-byte lookup tables

● Non-binary values
– Various schemes for converting to binary 

decisions (“binarization”)
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Non-Binary Arithmetic Coding
● Code values with up to 16 possibilities

– Equivalent to 4 binary decisions

– More expensive, but not 4x more expensive
● A lot of overheads are per-symbol

– Effectively parallel!

● One byte cannot model 16 probabilities
– Use, e.g., expected value plus distribution shape 

(Laplace, Exponential) and compute on the fly

● Convert things to hex, not binary!
– Often combine multiple values into one symbol
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How Are We Doing?
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PSNR-HVS-M Results on 19 
Sequences
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FastSSIM Results on 19 
Sequences



Mozilla & The Xiph.Org Foundation36 

Are We Compressed Yet?
● https://arewecompressedyet.com/

– Will run metrics on any git commit (we’re happy to 
add your repository, just ask)

– Amazon EC2 instances, so results in a few minutes

– Details on setup at 
https://wiki.xiph.org/AreWeCompressedYet

https://arewecompressedyet.com/
https://wiki.xiph.org/AreWeCompressedYet
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Daala Demo Pages
● https://people.xiph.org/~xiphmont/demo/

– Next Generation Video: Introducing Daala, Part 1

– Introducing Daala, Part 2: Frequency Domain Intra Prediction

– Introducing Daala, Part 3: Time/Frequency Resolution Switching

– Introducing Daala, Part 4: Chroma from Luma

– Daala, Part 5: Painting Images for Fun and Profit

– Daala, Part 6: Perceptual Vector Quantization

– Daala Progress Update 20141223: Still Images

https://people.xiph.org/~xiphmont/demo/
https://people.xiph.org/~xiphmont/demo/daala/demo1.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo2.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml
https://people.xiph.org/~xiphmont/demo/daala/demo4.shtml
https://people.xiph.org/~jm/daala/paint_demo/
https://people.xiph.org/~jm/daala/pvq_demo/
https://people.xiph.org/~xiphmont/demo/daala/update1.shtml
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Questions?
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